SUCCESS IN ERC: THE PRE-WRITING STAGE

ERC-2025-STG/COG

JUNE 25, 2024

Presentation by Stewe Bekk and Malte Beringer

In collaboration with

© 2024 by the authors.
Presentation content shared for personal use only.
ERC Grants Advisors and Trainers

ERC Proposal Review
ERC Interview Coaching
ERC Preparatory Seminars/Workshops

Stewe Bekk, MSc
stewe@bekkrs.com

Malte Beringer, PhD
malte@sciencepoint.eu

Past work experience

- Research support positions for 12 years
- Coordinator of ICFO’s pre-award unit for 8 years

Past work experience

- PhD in biochemistry
- 15 years lab experience in molecular life sciences
Goals of the seminar

1. Present essence of ERC StG/CoG: Ensure that your research idea and profile align with the call.

2. Review submission process and evaluation criteria: Tailor your proposal to meet ERC standards.

3. Address key challenges: Discuss common issues and how to overcome them.
What ERC grants are there?

Starting Grant
- 2-7 years after PhD
- (extensions apply)

Consolidator Grant
- 7-12 years after PhD
- (extensions apply)

Advanced Grant
- No PhD restrictions

Synergy Grant
- No PhD restrictions for up to 6 years and 2-4 PIs

Proof of Concept
- Only open to ERC grantees
What ERC grants are there?

- **Starting Grant**
 - 2-7 years after PhD
 - (extensions apply)

- **Consolidator Grant**
 - 7-12 years after PhD
 - (extensions apply)

- **Advanced Grant**
 - No PhD restrictions

- **Synergy Grant**
 - No PhD restrictions
 - for up to 6 years and 2-4 PIs

- **Proof of Concept**
 - Only open to ERC grantees
Call characteristics

StG

WP 2024: Oct 24, 2023
WP 2025: tba

Up to **1.5 M€**, 5 years

CoG

WP 2024: Dec 12, 2023
WP 2025: tba

Up to **2 M€**, 5 years

Up to additionally **1 M€** for:
(a) "start-up" costs for PIs moving to the EU/AC
(b) the purchase of major equipment
(c) access to large facilities
(d) other major experimental and field work costs, excluding personnel costs

Changes possible, confirm when WP 2025 is out!
The PI must be "engaged" by a host institution in EU MS or an AC (not necessarily currently employed).

Any nationality but must implement the project in EU MS or an AC (min 50% of working time).

StG: 2-7 years after PhD
WP 2025: (1 January 2018 - 31 December 2022)

CoG: 7-12 years after PhD
WP 2025: (1 January 2013 - 31 December 2017)

Maternity - 18 months for each child;
Paternity - documented time;
Some other cases (illness, clinical training, refugee)

At least 50% (StG), or 40% (CoG) of total time

Only the first eligible proposal will be evaluated if multiple proposals are submitted to the same Work Programme.

Changes possible, confirm when WP 2025 is out!
What is an ERC project?

- Important scientific challenge
- Unique, visionary approach
- Step-change: A ‘before’ and an ‘after’
- Feasibility: Not just a ‘crazy idea’
- Knowledge seeking/driven
- Focus on scientific impact
And what is NOT an ERC project?

- Incremental research: Natural continuation
- Unclear scientific motivation/project trigger
- Observational research
- Pure technology development
- Collaborative project
- Not aligned with PI profile and expertise
Application process & evaluation

SUBMISSION CONTENT
EVALUATION PROCESS
PANELS AND EXTERNAL EXPERTS
PART A
- Abstract
- Fix & free keywords (panel choice)
- Budget & budget description (8,000 chrs.)
- Time commitment, etc.

PART B1
- Cover page (1 pg)
- Extended synopsis (5 pg)
- CV & Track-record (4 pg)

PART B2
Scientific proposal (14 pg)
- SoA & objectives
- Methodology
Table on current grants & applications

SUPP DOC
- HI support letter
- Supporting doc for ethics/security
- StG/CoG:
 - PhD certificate
 - Supporting doc for eligibility extensions

Changes since WP 2024
Evaluation process

2-step evaluation

Changes in WP 2024

Step 1
- **Remote evaluation**
 - Part B1
 - **Panel members**

Panel meetings
- Selection of up to 44 proposals per panel for step 2 (scored A invited)
- Feedback to applicants of rejected proposals (scored A not invited, B or C)

Step 2
- **Remote evaluation**
 - Parts B1, B2 and budget (part A)
 - **Panel members**
 - **External experts**

Panel meetings and interviews
- Decision on final outcome
- Feedback to applicants of funded A, reserve A, unfunded A and rejected (B scored) proposals
Evaluation process

2-step evaluation

Remote evaluation
- Part B1
- **Panel members**

Step 1

Panel meetings
- Selection of up to 44 proposals per panel for step 2 (scored A invited)

Feedback to applicants of rejected proposals (scored A not invited, B or C)

Step 2

Remote evaluation
- Parts B1, B2 and budget (part A)
- **Panel members**
- **External experts**

Panel meetings and interviews
- Decision on final outcome

Feedback to applicants of funded A, reserve A, unfunded A and rejected (B scored) proposals
2-step evaluation

Evaluation process

Changes in WP 2024

Feedback to applicants of rejected proposals (scored A not invited, B or C)

Remote evaluation

Panel meetings
Selection of up to 44 proposals per panel for step 2 (scored A invited)

Panel meetings and interviews
Decision on final outcome

Feedback to applicants of funded A, reserve A, unfunded A and rejected (B scored) proposals

Remote evaluation
Parts B1, B2 and budget (part A)

Panel members
External experts

Step 1

Step 2
PANEL MEMBERS

- "Generalist scientists"
- Serve bi-yearly (max 4 rounds)
- Review in steps 1 and 2
- 10-15 proposals
- Remote review + panel discussion

EXTERNAL REVIEWERS

- Experts on the topic
- Contracted ad hoc
- Only review in step 2
- Single proposal
- Remote review only
Evaluation panel structure (2024 calls)

Life Sciences
- LS1 Molecules of Life: Biological Mechanisms, Structures and Functions
- LS2 Integrative Biology: From Genes and Genomes to Systems
- LS3 Cell Biology, Development, Stem Cells and Regeneration
- LS4 Physiology in Health, Disease and Ageing
- LS5 Neuroscience and Disorders of the Nervous System
- LS6 Immunity, Infection and Immunotherapy
- LS7 Prevention, Diagnosis and Treatment of Human Diseases
- LS8 Environmental Biology, Ecology and Evolution
- LS9 Biotechnology and Biosystems Engineering

Physical Sciences and Engineering
- PE1 Mathematics
- PE2 Fundamental Constituents of Matter
- PE3 Condensed Matter Physics
- PE4 Physical and Analytical Chemical Sciences
- PE5 Synthetic Chemistry and Materials
- PE6 Computer Science and Informatics
- PE7 Systems and Communication Engineering
- PE8 Products and Processes Engineering
- PE9 Universe Sciences
- PE10 Earth System Science
- PE11 Materials Engineering

Social Sciences and Humanities
- SH1 Individuals, Markets and Organisations
- SH2 Institutions, Governance and Legal Systems
- SH3 The Social World and Its Interactions
- SH4 The Human Mind and Its Complexity
- SH5 Texts and Concepts
- SH6 The Study of the Human Past
- SH7 Human Mobility, Environment, and Space
- SH8 Studies of Cultures and Arts
ERC-2023-CoG Statistics

<table>
<thead>
<tr>
<th>Category</th>
<th>Submitted Proposals</th>
<th>Selected Proposals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life Sciences</td>
<td>612</td>
<td>89</td>
</tr>
<tr>
<td>Physical Sciences and Engineering</td>
<td>881</td>
<td>129</td>
</tr>
<tr>
<td>Social Sciences and Humanities</td>
<td>637</td>
<td>90</td>
</tr>
<tr>
<td>Total</td>
<td>2130</td>
<td>308</td>
</tr>
</tbody>
</table>

Success rate ~ 14.5%

*After transfer of proposals. Certain proposals may be reallocated to a different panel with the agreement of both Panel Chairs concerned. This is done when necessary and solely due to the expertise required for the evaluation.
Each descriptor represents a research area. Must choose at least 1 and up to 4.

Determines primary and (if applicable) secondary panel.
Fictitious project: “Nano-engineered Smart Materials for Enhanced Industrial Catalysis”

Relevant descriptors

PE3 Condensed Matter Physics
- Structure, electronic properties, fluids, nanosciences, biological physics
- Structure of solids, material growth and characterisation
- Mechanical and acoustical properties of condensed matter, lattice dynamics
- Transport properties of condensed matter
- Electronic properties of materials, surfaces, interfaces, nanostructures
- Physical properties of semiconductors and insulators
- Macroscopic quantum phenomena, e.g. superconductivity, superfluidity, quantum Hall effect
- Spintronics
- Magnetism and strongly correlated systems
- Condensed matter – beam interactions (photons, electrons, etc.)
- Nanophysics, e.g. nanoelectronics, nanophotonics, nanomagnetism, nanoelectromechanics
- Mesoscopic quantum physics and solid-state quantum technologies
- Molecular electronics
- Structure and dynamics of disordered systems, e.g. soft matter (gels, colloids, liquid crystals), granular matter, liquids, glasses, defects
- Fluid dynamics (physics)
- Statistical physics: phase transitions, condensed matter systems, models of complex systems, interdisciplinary applications
- Physics of biological systems

PE8 Products and Processes Engineering
- Product and process design, chemical, civil, environmental, mechanical, vehicle engineering, energy processes and relevant computational methods
- Aerospace engineering
- Chemical engineering, technical chemistry
- Civil engineering, architecture, offshore construction, lightweight construction, geotechnics
- Computational engineering
- Fluid mechanics
- Energy processes engineering
- Mechanical engineering
- Propulsion engineering, e.g. hydraulic, turbo, piston, hybrid engines
- Production technology, process engineering
- Manufacturing engineering and industrial design
- Environmental engineering, e.g. sustainable design, waste and water treatment, recycling, regeneration or recovery of compounds, carbon capture & storage
- Naval/marine engineering
- Industrial bioengineering
- Automotive and rail engineering; multi-/inter-modal transport engineering
Fictitious project: “Nano-engineered Smart Materials for Enhanced Industrial Catalysis”

Panel compositions

PE3 Condensed Matter Physics
Structure, electronic properties, fluids, nanosciences, biological physics

<table>
<thead>
<tr>
<th>Member’s Name</th>
<th>Position</th>
<th>Department/institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cait MacPhee</td>
<td>Prof. of Biological Physics</td>
<td>School of Phys. & Astron., Univ. of Edinburgh (UK)</td>
</tr>
<tr>
<td>Eric Akkermans</td>
<td>Prof. of Theoretical Physics</td>
<td>Inst. for Theoretical Phys., Univ. of Amsterdam (Netherlands)</td>
</tr>
<tr>
<td>Lydéric Bocquet</td>
<td>Prof. of Physics</td>
<td>Lab of Phys. of Interfaces & Thin Films, EPFL (Switzerland)</td>
</tr>
<tr>
<td>Albert Bonanni</td>
<td>Prof. of Physics</td>
<td>Phys. Dept., Saepienses Univ. of Rome (Italy)</td>
</tr>
<tr>
<td>Rachel Goldman</td>
<td>Prof. of Physics</td>
<td>Phys. Dept., Cornell Univ. (USA)</td>
</tr>
<tr>
<td>Bernhard Keimer</td>
<td>Prof. of Physics</td>
<td>Max Planck Inst. for Solid State Research, Stuttgart (Germany)</td>
</tr>
<tr>
<td>Saulius Marcinkevicius</td>
<td>Prof. of Physics</td>
<td>Ctr. for Phys. Sci. & Tech., Vilnius (Lithuania)</td>
</tr>
<tr>
<td>Theo Rasing</td>
<td>Prof. of Experimental physics</td>
<td>MESA+ Inst. for Nanotech., Univ. of Twente (Netherlands)</td>
</tr>
<tr>
<td>Francesco Ricci</td>
<td>Prof. of Physics</td>
<td>Phys. Chem. & Biol. Dept., Linköping Univ. (Sweden)</td>
</tr>
<tr>
<td>Sandro Scandolo</td>
<td>Prof. of Physics</td>
<td>Int. Centre for Theor. Phys., Trieste (Italy)</td>
</tr>
<tr>
<td>Christian Schonenberger</td>
<td>Prof. of Physics</td>
<td>Phys. Dept., Univ. of Basel (Switzerland)</td>
</tr>
<tr>
<td>Iairo Sinova</td>
<td>Prof. of Physics</td>
<td>Phys. Dept., Johannes Gutenberg Univ. Mainz (Germany)</td>
</tr>
</tbody>
</table>

PE8 Products and Processes Engineering
Product and process design, chemical, civil, environmental, mechanical, vehicle engineering, energy processes and relevant computational methods

<table>
<thead>
<tr>
<th>Member’s Name</th>
<th>Position</th>
<th>Department/institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Graetzel</td>
<td>Prof. of Chem. & Physics</td>
<td>Lab of Photonics & Interfaces, EPFL (Switzerland)</td>
</tr>
<tr>
<td>Carlos Cesnik</td>
<td>Prof. of Aero. Eng.</td>
<td>Aero. Eng. Dept., Univ. of Michigan (USA)</td>
</tr>
<tr>
<td>Yordan Garbatov</td>
<td>Prof. of Mechanics</td>
<td>Inst. of Mechanics, Bulgarian Acad. of Sciences (Bulgaria)</td>
</tr>
<tr>
<td>Christian Hellmich</td>
<td>Prof. of Civil Eng.</td>
<td>Inst. of Struct. Eng., Vienna Univ. of Tech. (Austria)</td>
</tr>
<tr>
<td>Dan Henningson</td>
<td>Prof. of Appl. Mechanics</td>
<td>Appl. Mechanics Dept., Chalmers Univ. of Tech. (Sweden)</td>
</tr>
<tr>
<td>Hrvoje Jasak</td>
<td>Prof. of Fluid Mechanics</td>
<td>Fluid Mech. Dept., Fac. of Mech. Eng. & Naval Arch., Univ. of Zagreb (Croatia)</td>
</tr>
<tr>
<td>Siglinda Perathoner</td>
<td>Prof. of Ind. Eng.</td>
<td>Ind. Eng. Dept., Univ. of Padova (Italy)</td>
</tr>
<tr>
<td>Nor A. Saidina Amin</td>
<td>Prof. of Chem. Eng.</td>
<td>Chem. Eng. Dept., Univ. Teknologi Malaysia (Malaysia)</td>
</tr>
<tr>
<td>Richard Stone</td>
<td>Prof. of Chem. Eng.</td>
<td>Chem. Eng. Dept., Imperial College London (UK)</td>
</tr>
<tr>
<td>Sebastian Thiede</td>
<td>Prof. of Eng. Thermodyn.</td>
<td>Inst. of Eng. Thermodyn., TU Darmstadt (Germany)</td>
</tr>
<tr>
<td>Radek Zboril</td>
<td>Prof. of Phys. Chem.</td>
<td>Phys. Chem. Dept., Palacky Univ, Olomouc (Czech Republic)</td>
</tr>
</tbody>
</table>
Panel and fixed keywords selection steps

1. Select potential panels by keywords
2. Identify panel members from previous calls
3. Analyse fit for each panel
 - Project
 - Who will know the topic?
 - Who will appreciate the breakthrough?
 - Who will understand the scientific approach?
 - Will a single panel understand the project?
 - PI
 - Who might/will recognize the candidate?
 - Who will appreciate his/her CV and track-record?
4. Select 1-4 fixed keywords
5. Start writing the proposal!

https://erc.europa.eu/apply-grant/panel-members
ERC panel member tool

Filters

Panel member name

Review panels

-

- **(LS) Life Sciences**
 - LS1
 - LS2
 - LS3
 - LS4
 - LS5
 - LS6
 - LS7
 - LS8
 - LS9

- **(PE) Physical Sciences & Engineering**
 - PE1
 - PE2
 - PE3
 - PE4
 - PE5
 - PE6
 - PE7
 - PE8
 - PE9
 - PE10
 - PE11

- **(SH) Social Sciences & Humanities**
 - SH1
 - SH2
 - SH3
 - SH4

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PE1</td>
<td>SIG</td>
<td>Boris Adamczewski</td>
<td></td>
</tr>
<tr>
<td>PE1</td>
<td>SIG</td>
<td>Anton Alexeev</td>
<td></td>
</tr>
<tr>
<td>PE1</td>
<td>SIG</td>
<td>Habib Ammari</td>
<td></td>
</tr>
<tr>
<td>PE1</td>
<td>SIG</td>
<td>Adelchi Azzalini</td>
<td></td>
</tr>
<tr>
<td>PE1</td>
<td>SIG</td>
<td>Nicola Bellomo</td>
<td></td>
</tr>
<tr>
<td>PE1</td>
<td>SIG</td>
<td>Bo Berndtsson</td>
<td></td>
</tr>
<tr>
<td>PE1</td>
<td>SIG</td>
<td>Roman Bezrukavnikov</td>
<td></td>
</tr>
<tr>
<td>PE1</td>
<td>SIG</td>
<td>Stéphane Boucheron</td>
<td></td>
</tr>
<tr>
<td>PE1</td>
<td>SIG</td>
<td>Giuseppe Buttazzo</td>
<td></td>
</tr>
<tr>
<td>PE1</td>
<td>SIG</td>
<td>Luigi Chierchia</td>
<td></td>
</tr>
<tr>
<td>PE1</td>
<td>SIG</td>
<td>Felipe Cucker</td>
<td></td>
</tr>
<tr>
<td>PE1</td>
<td>SIG</td>
<td>Michael Dmota</td>
<td></td>
</tr>
<tr>
<td>PE1</td>
<td>SIG</td>
<td>Yakov Eliašberg</td>
<td></td>
</tr>
<tr>
<td>PE1</td>
<td>SIG</td>
<td>Olivier Dominique Fauquezas</td>
<td></td>
</tr>
</tbody>
</table>
Evaluation criterion

SCIENTIFIC EXCELLENCE AND ITS MEANING
Scientific excellence

Evaluation of excellence at two levels:

<table>
<thead>
<tr>
<th>The Research Project</th>
<th>The Principal Investigator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground-breaking nature</td>
<td>Intellectual capacity</td>
</tr>
<tr>
<td>Ambition</td>
<td>Creativity</td>
</tr>
<tr>
<td>Feasibility</td>
<td></td>
</tr>
</tbody>
</table>
Scientific excellence

Evaluation of excellence at two levels:

<table>
<thead>
<tr>
<th>THE RESEARCH PROJECT</th>
<th>THE PRINCIPAL INVESTIGATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground-breaking nature</td>
<td>Intellectual capacity</td>
</tr>
<tr>
<td>Ambition</td>
<td>Creativity</td>
</tr>
<tr>
<td>Feasibility</td>
<td></td>
</tr>
</tbody>
</table>

Changes in evaluation questions in WP 2024
Evaluation of project: Step 1

- To what extent does the proposed research address **important challenges**?
- To what extent are the objectives **ambitious** and beyond the SoA?
- To what extent is the proposed research **high risk/high gain**?
- To what extent is the outlined scientific approach **feasible**?

Removed in WP 2024

additionally in Step 2

- To what extent are (i) the proposed **research methodology** and working arrangements appropriate, and (ii) involve developing a novel methodology?
- To what extent are the **timescales**, **resources** and **PI commitment** adequate?
Evaluation of project: Step 1

- To what extent does the proposed research address **important** challenges?
- To what extent are the objectives **ambitious** and beyond the SoA?
- To what extent is the proposed research **high risk/high gain**?
- To what extent is the outlined scientific approach **feasible**?

Additionally in Step 2

- To what extent are (i) the proposed **research methodology** and working arrangements appropriate, and (ii) involve developing **novel methodology**?
- To what extent are the **timescales, resources** and **PI commitment** adequate?
To what extent does the proposed research address important challenges?

- Motivation & Relevance
- Scientific question/problem?
- Limitations & barriers
To what extent does the proposed research address important challenges?

- Motivation & Relevance
- Scientific question/problem?
- Limitations & barriers
- Original & creative

Steps 1+2
To what extent are the **objectives ambitious** and beyond the SoA (e.g. novel concepts and approaches or development between or across disciplines)?

Steps 1+2

Evaluation criteria

- Innovative & non-incremental
- Very challenging but not impossible
- Examine, Assess, ..., Devise, Develop,
- Verifiable: Expected results
To what extent are the objectives ambitious and beyond the SoA?

Solution / vision

Steps 1+2

Evaluation criteria

- Innovative & non-incremental
- Very challenging but not impossible
- Examine, Assess, ..., Devise, Develop,
- Verifiable: Expected results
To what extent is the outlined **scientific approach** feasible?

Steps 1+2

- Rationale of concept and approach
- Trigger, initial data, timeliness
- Project design
- Methods, disciplines, data
- To what extent are (i) the proposed **research methodology** and working arrangements appropriate?

- To what extent are the **timescales**, **resources** and **PI commitment** adequate and properly justified?

Research methodology
- Type of methods, technologies and models used, and why
- Inter-/multidisciplinarity
- Novelty in relation to SoA
- Ability to draw conclusions

Timescales, resources & commitment
- Plausible and coherent work plan
- Resources appropriate for the proposed activities
- Sufficient PI dedication
Scientific excellence

Evaluation of excellence at two levels:

<table>
<thead>
<tr>
<th>THE RESEARCH PROJECT</th>
<th>THE PRINCIPAL INVESTIGATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground-breaking nature</td>
<td>Intellectual capacity</td>
</tr>
<tr>
<td>Ambition</td>
<td>Creativity</td>
</tr>
<tr>
<td>Feasibility</td>
<td></td>
</tr>
</tbody>
</table>

Changes in evaluation questions since WP 2024
• To what extent has the PI demonstrated the ability to conduct (i) **ground-breaking research**, and provides evidence of (ii) **creative and original thinking**?

Ground-breaking research:
- High *quality* of scientific achievements: citations, journals...etc.
- PI positioned as a reference in the field
- Track record of exceptional research achievements

Ability and Leadership
- Main (senior) authorships
- Stepping stones towards independence
- Evidence of research independence / GL
- Experience managing teams
To what extent has the PI demonstrated the ability to conduct (i) **ground-breaking research**, and provides evidence of (ii) **creative and original thinking**?

- **Peer recognition / trust**
 - Grant & fellowships
 - (Leading) International collaborations
 - Commissions of trust: peer review, editorial boards, etc.

- **International visibility**
 - Conferences, invited talks, etc
 - Organising important conferences; network

- **Legacy** *(removed from official questions)*
To what extent has the PI demonstrated the ability to conduct (i) **ground-breaking research**, and provides evidence of (ii) **creative and original thinking**?

- **Creativity and Originality**
 - Evidence for original research
 - New concepts / methodologies
 - New research directions in the past
To what extend does the PI have the required scientific expertise and capacity to successfully **execute the project**?

Evaluation criteria

- **Steps 1+2**
What is the **big question/problem?**

Why is it important?

Is it timely?

Scientific Impact

What will be the main **scientific legacy?**

How does it inspire **future research?**

Breakthrough

What is the **overall aim** of the entire project?

And the **main innovation**, compared to the SoA?

Feasibility

What makes the project feasible & realistic?

Why are **YOU** the ideal researcher for this project?
Thank you!

www.bekkresearchsupport.com
stewe@bekkrs.com

www.sciencepoint.eu
malte@sciencepoint.eu